a2 United States Patent

US009483246B2

10) Patent No.: US 9,483,246 B2

Prakash et al. 45) Date of Patent: Nov. 1, 2016
(54) AUTOMATED MODULAR AND SECURE USPC ittt s 705/50
BOOT FIRMWARE UPDATE See application file for complete search history.
(71) Applicant: Intel Corporation, Santa Clara, CA (56) References Cited
US
(US) U.S. PATENT DOCUMENTS
(72) Inventors: Gyan Prakash, Beaverton, OR (US); 5910854 A 5/1993 Beaverton et al
Saurabh Dadu, Tigard, OR (US); 6.754.828 Bl 6/2004 Marisetty et al.
Selim Aissi, Menlo Park, CA (US); (Continued)
Hormuzd M. Khosravi, Portland, OR
(US); Duncan Glendinning, Chandler,
AZ (US); Cris Rhodes, Chandler, AZ FOREIGN PATENT DOCUMENTS
(US) CN 1506813 A 6/2004
CN 1647443 A 7/2005
(73) Assignee: Intel Corporation, Santa Clara, CA (Continued)
(US)
* e ; ssola : OTHER PUBLICATIONS
(*) Notice: SubJeCt. to any dlSCIalmer’. the term of this Office Action received for Chinese Patent Application No.
patent is extended or adjusted under 35 541105726666, mailed on Apr. 28, 2014, 6 pages of English
U.S.C. 154(b) by 466 days. Translation and 4 pages of CN Office Action.
(Continued)
(21) Appl. No.: 14/055,008
(22) Filed: Oct. 16, 2013 Primary Examiner — James D Nigh
(74) Attorney, Agent, or Firm — Jordan IP Law, LLC
(65) Prior Publication Data
US 2014/0047428 Al Feb. 13, 2014 ©7) ABSTRACT
o A method, apparatus, system, and computer program prod-
L uct for an automated modular and secure boot firmware
Related U.S. Application Data update. An updated boot firmware code module is received
(62) Division of application No. 12/592,605, filed on Now. in a secure partition of a system,.tl.le updated boot firmware
code module to replace one original boot firmware code
30, 2009, now Pat. No. 8,589,302. S
module for the system. Only the one original boot firmware
(51) Int. Cl code module is automatically replaced with the updated boot
G0;$Q ;)9 00 (2006.01) firmware code module. The updated boot firmware code
GOGF 9/445 200 6. 01 module is automatically executed with the plurality of boot
.(01) firmware code modules for the system and without user
(Continued) intervention when the system is next booted. The updated
(52) US. CL boot. ﬁrmware code module may be.written to an up.d.ate
cpPC GOGF 8/65 (2013.01); GO6F 21/572 p?rt}llnoél ofa ﬁrmv&{are Vglume(:i, v&{hereln.tlﬁe updlellte partition
"""""""" . . of the firmware volume 1s read along with another partition
(2013.01); GOGF 9/24 (2013.01); GO6Q 10/00 of the firmware volume containing the plurality of boot
(58) Ficld of Classifi S b (2013.01) firmware code modules when the system is booted.
ield of Classification Searc
CPC o GO06Q 10/00; GOGF 9/24 6 Claims, 7 Drawing Sheets

DURING BOOT, BOOT FIRMWARE MODULAR UPDATE DISPATCHER 510
EXAMINES MODULAR BOOT UPDATE FIRMWARE VOLUME
PARTITION FOR UPDATED DRIVERS

BOOT FIRMWARE MODULAR UPDATE DISPATCHER LOADS UPDATED 520
DRIVERS FROM MODULAR BOOT UPDATE FIRMWARE VOLUME
PARTITION

525

| BOOT BIOS

NO

530
UPDATED DRIVER JES
FAILS? VOLUME PARTITION
540

LOAD ORIGINAL
DRIVER FROM
ORIGINAL FIRMWARE

550
CONTINUE BOOT WITH 08

PROVIDE STATUS OF BOCT FIRMWARE MODULAR UPDATE
TO SERVER

o
9
3

MODULAR UPDATE

| SERVER RESPONDS TO STATUS OF BOOT FIRMWARE

US 9,483,246 B2

Page 2
(51) Int. CL CN 101526903 A 9/2009
GO6F 21/57 (2013.01) EP 1970830 A2 9/2008
GOG6F 9/24 (2006.01) Jp 10-307725 A 11/1998
G060 10/00 (2012.01) Jp 10-307726 A 11/1998
Jp 2002-023877 A 1/2002
. JP 2005-196747 A 7/2005
(56) References Cited P 2000-110297 A 5/2009
U.S. PATENT DOCUMENTS KR 10-2007-0046963 A 5/2007
WO 2004/038561 A2 5/2004
7,024,551 B2 4/2006 King et al. WO 2009/062965 A2 5/2009
7,043,664 B1* 5/2006 Chiloyan GOGF 11/1417
714/5.11
7,356,707 B2 4/2008 Foster et al. OTHER PUBLICATIONS
7,376,870 B2 5/2008 Kataria et al. . . L
8,589,302 B2 11/2013 Prakash et al. Notice of Allowance received for Korean Patent Application No.
2004/0083375 Al 4/2004 Foster et al. 10-2010-0092955, mailed on Jan. 14, 2013, 3 pages of Notice of
%882;8533;;; ﬁ} ;;3882 gﬁl%nztr th' al Allowance including 1 pages of English translation.
2006/0075276 Al* 4/2006 Kataria GO6F 8/65 Notice of Allowance received for Japanese Patent Application No.
714/47.1 2010-214374, mailed on Dec. 4, 2012, 2 pages of Notice of
2007/0143530 Al* 6/2007 Rudelic GOG6F 21/57 Allowance including 1 page of English translation.
) 711/103 Office Action received for the Furopean Patent Application No.
2008/0270677 Al* 10/2008 Kolakowski GO6F 8/60 102516432, mailed on Mar. 10’ 2011’ 4 pages.
2009/0007089 AL* 1/2009 Rothman ... G0761Flé§1/22 Office Action received for the Japanese Patent Application No.
717/168 2010-214374, mailed on Jul. 31, 2012, 5 pages of Office Action
2009/0100159 Al 4/2009 Fxtra including 2 pages of English translation.
2010/0241838 Al* 9/2010 Cohen GOG6F 11/1004 Office Action received for European Patent Application No.
713/2 10251643.2, mailed on Sep. 13, 2013, 5 pages.
2010/0248707 AL* 9/2010 Hoffner HO04W 24/04 Office Action received for Chinese Patent Application No.
010/0325627 AL* 122010 Morton GO‘%%SQ‘% 201010572666.6, mailed on Mar. 5, 2013, 15 pages of Office Action
""""""""""" 717/168 including 9 pages of English translation.

FOREIGN PATENT DOCUMENTS

CN

101031890 A
101414160 A

9/2007
4/2009

Office Action received for Chinese Patent Application No.
2010105726666, mailed on Oct. 29, 2013, 34 pages of Office Action
including 7 pages of English translation.

* cited by examiner

US 9,483,246 B2

Sheet 1 of 7

Nov. 1, 2016

U.S. Patent

} "Old

861
NOIO3Y Y1v(Q

96!
JUYMAYI4 13SdIHO

e))
FIYMINYI
@_m_._._oEzoo xmo\sm_z\

e)

€61
JINAON
NOILYOINNWIOD
ANS0I8

6l
_ dVMAYIIS0I8

[
AJOWIN HSY 14

16l
J0V443LINI
HSY14

001
WH041v1d

08}
43TI04INOD
JOVH0LS

[i23

(143
13SdIHO

i)
d3T104.INOD
HJOMLIN

(193

0L}

(3) NN
Y3 TIOMINODOHOIN ALTTIEVIOVNYI
<l
WYYS
W ———]
ING
=7 0
VNG 408839044

S30IAY3S
3SI4dd31NT

VLD
TANNVHO
NOILVIINNIAWOD
800

US 9,483,246 B2

Sheet 2 of 7

Nov. 1, 2016

U.S. Patent

¢ Old

1L}

TANNYHO
NOILYOINNAINOD
800

jui4
J0IAS3S
31¥adN ¥vINAoW

JUYMIYIH 1009

01
S30IAY3S 3SIHdHILNT

(- ~
[i]¥4
TINYIY TN
[
$301A43S NOWWOD W
14 o | 4 14
31NAON e U5 o f] y39vNvA J1NAON
NOILO3L3a [JINAOW 31NAOW 31v0dn 9YINAOW [NOILYOINNNOD
143HL ALIINOS | INJINIOVNVIN | [gywaimyi4 1009 800
[
INIONT ALMIGYIOYNYI
\
Ty
[4} ¥ITIOYINOD
138dIHD MHOMLIN
_
O wr

141
AHO0LISOdTY ¥1va
ASIHdH3INT

US 9,483,246 B2

Sheet 3 of 7

Nov. 1, 2016

U.S. Patent

€ "Old

m _-0g

djepdn aJemuwil4 100g 8y} JO SnJeIS YIM JOAIDS 0} YO

6 SnjeS ejepdn
alemwi4 Joog aulwisiaq

A
A 4

p)

JOAUP/AINPOW JO
abew! [euiblo ym
100gal ‘ainjie} uodn
"JSNIP/B|NPOJ\ Mau

L€
yimsjoog Solg 8¢ o

18nI8S Joj sBspy pusg

b 4

I
I
1
I
I
[
I
—‘
™

J00qay Jo} 1sanbas papasu sy

A

ajepdn aJemwi4 J00g SU} JO SNBIS LM JOABS 0) Yoy 5€—

|
1
m
m a|npow mau _
| M AJ Sjepdn !
| a|npow Ve |
| mau jo Aubeju “
! 10§ SY08YD e -
7e-1 JoAUp/AINpOW T
“ pajepdn yyim Jsenbal ejepdn siemul4 Joog 8y} spuss JeAIeS !
I ajepdn asemuwii4 joog Aue Joj syoayo Jabeuepy e/ 1
“ alepdn Jejnpopy aJemuli4 100g Uoijeslunwwiod Jyewabeuew asudisjus Buung |
1 | |
1 | |
0LC — 0%¢
80IMI8S djepdn 0l€ Jabeuely ajepdn
JB|NPOJ\ 8lemuuli4 joog S01g JBNPOJ\ IemuLI4 100g

US 9,483,246 B2

Sheet 4 of 7

Nov. 1, 2016

U.S. Patent

¥ "OId

UMOPINYS [100060™] — €4—— [uoezijeniul wiopjeld] <— uo Jamod
Bl om m | Bl o w | w |
1) 0%% 0S¥ (sag) 0EF 147 01
o (1y) (151) peot pseS | (3xq)uswuonaug | uonezienu (039)
18y BlWI| uny weisAS Juaisuei] | Asqloog | uognaex3uenug | (3d) 143 8id Aunaeg

L] fynoss u

m . H JusluuolIAug H JopeoT m ey “ m

%] somus [wogsoreuy | q S m

L i R L ger 7 : T i

wopeayddy | JaBeuejy Jayoredsiq

m] W959.d-S0] joog onIQ 143 m

i m m m m

m m m m_%@wsmum m L o |

! m m Uoisvel | g |)] pleog ,./

“ : : : 90IAI9 “ — !

o w7 2 | i T

!] t | wewuonug | omeq | N

i | sowesuer] | N) i/ T

!] toop “ 1 T [

o i awg m m Lt |

! m t | Uogeaddy [m m R

o [_wmayso | § e | m 1 ad

: : : ¢owloged ¢ : : :

AT pasodxg

U.S. Patent Nov. 1, 2016 Sheet 5 of 7 US 9,483,246 B2

DURING BOOT, BOOT FIRMWARE MODULAR UPDATE DISPATCHER /\5j10

EXAMINES MODULAR BOOT UPDATE FIRMWARE VOLUME
PARTITION FOR UPDATED DRIVERS

v

BOOT FIRMWARE MODULAR UPDATE DISPATCHER LOADS UPDATED 520
DRIVERS FROM MODULAR BOOT UPDATE FIRMWARE VOLUME ~/

PARTITION
v 525
~/
BOOT BIOS
LOAD ORIGINAL
YES DRIVER FROM
UPDATED D,)R'VER ORIGINAL FIRMWARE
FAILS? VOLUME PARTITION
540
|
550
CONTINUE BOOT WITH OS oy
v 560
PROVIDE STATUS OF BOOT FIRMWARE MODULAR UPDATE —~
TO SERVER
v 570
SERVER RESPONDS TO STATUS OF BOOT FIRMWARE I~
MODULAR UPDATE

FIG. 5

US 9,483,246 B2

Sheet 6 of 7

Nov. 1, 2016

U.S. Patent

9 "Old

(saq) uonos|es 801A9(Joog

(3xQ) JuswuolIAUT UOIIN28XT JoAl]

J

0r9

059
19pe07 SO

/

sad

|/ ah9

SETE e

[A%Y)

f

0g9 779 079
sJ9AQ pajepdn aJEMpJEH
Jojuoniied A4 | swnjoA a1emui
17
J8AII([02010.d
¥00|g SWINoA asemway |/~ 729
JaAl(102010.d
SWN|OA SJeMULI4 /99
W 0L9
Joyojedsiq
alepdn Jejnpo
alemulli{ 100g
v/ uonepuno4 3xq | 909
ISIT90H |~ %09

U.S. Patent

Nov. 1, 2016 Sheet 7 of 7 US 9,483,246 B2
VM 710 VM 720
GUEST SW GUEST SW
12 122
GUEST 0OS GUEST 0S8
m 21

A 4 y

VIRTUAL MACHINE MONITOR ("VMM")
730

NETWORK
PROCESSOR CONTROLLER
705 760

HOST HARDWARE
740

PLATFORM
700

FIG. 7

US 9,483,246 B2

1
AUTOMATED MODULAR AND SECURE
BOOT FIRMWARE UPDATE

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application is a Divisional of U.S. patent application
Ser. No. 12/592,605, filed Nov. 30, 2009.

COPYRIGHT NOTICE

Contained herein is material that is subject to copyright
protection. The copyright owner has no objection to the
facsimile reproduction of the patent disclosure by any per-
son as it appears in the Patent and Trademark Office patent
files or records, but otherwise reserves all rights to the
copyright whatsoever.

TECHNICAL FIELD

The present disclosure relates generally to maintenance of
BIOS and boot firmware code in computer systems.

BACKGROUND

Originally developed for IBM PC Compatible computers,
the Basic Input/Output System (BIOS), also known as the
System BIOS, is a de facto standard defining a firmware
interface. The BIOS is boot firmware, designed to be the first
code run by a PC when powered on. The initial function of
the BIOS is to identify, test, and initialize system devices
such as the video display card, hard disk, and floppy disk and
other hardware. This is to prepare the machine into a known
state, so that software such as an operating system stored on
compatible media can be loaded, executed, and given con-
trol of the PC. This process is known as booting, or booting
up, which is short for bootstrapping.

BIOS programs provide a small library of basic input/
output functions that can be called to operate and control the
peripherals such as the keyboard, text display functions and
so forth. When a system is powered on, BIOS checks system
configuration settings and loads programs that act as trans-
lators between the hardware components and the operating
system into memory. For example, when a user presses a key
on the keyboard, the signal is sent to a keyboard interrupt
handler, which tells the processor what it is and passes it on
to the operating system.

BIOS was developed for the IBM PC at a time when
processors functioned in a 16-bit processor mode and
addressable memory was limited to one megabyte, and the
code reflected IBM PC AT hardware dependencies. Operat-
ing systems later developed for 32-bit processors began to
include device drivers to handle I/O rather than rely on
invoking the 16-bit runtime interface provided by BIOS.
These device drivers are often provided by platform firm-
ware and are loaded into memory during BIOS initialization
prior to loading the operating system. The Extensible Firm-
ware Interface (EFI) is a specification that defines a software
interface between an operating system and platform firm-
ware. EFI defines boot services, which include text and
graphical console support on various devices, bus, block,
and file services, and runtime services, such as date, time,
and NVRAM services. More information about the EFI
specification is provided at the URL developer-intel-com/
technology/efi/main_specification.htm (where URLs are
described herein by omitting the ‘http://” prefix and replac-

10

15

20

25

30

35

40

45

50

55

60

65

2

ing the ‘.’ character with the ‘-’ character to avoid an active
hyperlink from within this document).

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1is a block diagram of a system configured to enable
automated modular boot firmware updates in accordance
with one embodiment of the invention.

FIG. 2 shows further details of the system of FIG. 1 in
enabling automated modular boot firmware updates in
accordance with one embodiment of the invention.

FIG. 3 is a flow diagram showing interaction between a
boot firmware modular update manager and an enterprise
boot firmware modular update service to perform an auto-
mated modular boot firmware update in accordance with one
embodiment of the invention.

FIG. 4 shows phases of a boot sequence during which
components of one embodiment of the invention operates.

FIG. 5 is a flowchart of a method to perform a modular
boot firmware update when booting a system in accordance
with one embodiment of the invention.

FIG. 6 is a flow diagram for booting a system after an
automated modular boot firmware update has been per-
formed in accordance with one embodiment of the inven-
tion.

FIG. 7 shows a virtual machine environment for imple-
menting a boot firmware modular update manager in accor-
dance with one embodiment of the invention.

DETAILED DESCRIPTION

Embodiments of the present invention may provide a
method, apparatus, system, and computer program product
for performing a modular boot firmware update. BIOS and
platform firmware updates have traditionally been per-
formed by providing a monolithic image of the BIOS/boot
firmware code modules and requesting a local user to reboot
the system in order to install the BIOS/boot firmware
updates.

In one embodiment, a method includes receiving an
updated boot firmware code module to replace one boot
firmware code module of multiple boot firmware code
modules for the system and automatically causing the
updated boot firmware code module to be loaded instead of
the one boot firmware code module when the system is
booted. The updated boot firmware code module replaces
only the one boot firmware code module and not all of the
boot firmware code modules for the system when the system
is booted.

Automatically causing the updated boot firmware code
module to be loaded may be performed without action by a
user of the system. In one embodiment, the method further
includes writing the updated boot firmware code module to
an update partition of a firmware volume, wherein the
update partition of the firmware volume is read along with
another partition of the firmware volume containing the boot
firmware code modules when the system is booted. The
method may include confirming the integrity of the updated
boot firmware module prior to writing the updated boot
firmware module to the update partition of the firmware
volume.

In one embodiment, the updated boot firmware module is
offered by a server via an out-of-band communication
channel coupled to the microprocessor. The method may
further include authenticating the integrity of the server prior
to receiving the updated boot firmware module. If a problem
occurs during loading of the updated boot firmware module,

US 9,483,246 B2

3

the method may include causing the one original boot
firmware module to be loaded. In one embodiment, the
method further includes providing a status of installation of
the updated boot firmware module after the system is booted
to a server from which the updated boot firmware module
was received.

The present invention improves upon the traditional
BIOS/platform firmware monolithic image update process
and allows for modular and secure updates of BIOS and
platform firmware. The present invention enables updates to
be performed for a specific BIOS/platform firmware code
module/driver or an application. With platform firmware
becoming increasingly sophisticated and providing critical
functionality such as security features, defects in the BIOS
and platform firmware can now be immediately corrected
and provided by enterprise management servers rather than
requiring an original equipment manufacture to provide a
new monolithic image for the entire BIOS/platform firm-
ware region of flash memory for the system.

Reference in the specification to “one embodiment” or
“an embodiment” of the present invention means that a
particular feature, structure or characteristic described in
connection with the embodiment is included in at least one
embodiment of the invention. Thus, the appearances of the
phrases “in one embodiment,” “according to one embodi-
ment” or the like appearing in various places throughout the
specification are not necessarily all referring to the same
embodiment.

For purposes of explanation, specific configurations and
details are set forth in order to provide a thorough under-
standing of the present invention. However, it will be
apparent to one of ordinary skill in the art that embodiments
of the present invention may be practiced without the
specific details presented herein. Furthermore, well-known
features may be omitted or simplified in order not to obscure
the present invention. Various examples may be given
throughout this description. These are merely descriptions of
specific embodiments of the invention. The scope of the
invention is not limited to the examples given.

In one embodiment, the modular boot firmware update
service is provided within a secure partition that provides an
isolated and controlled environment for receiving boot firm-
ware code module updates from an enterprise platform
management service. This secure partition ensures that
updates to boot firmware code of the system are verified as
originating with an authenticated source.

The isolated and secure environment of the boot firmware
modular update service may comprise a variety of different
types of partitions, including an entirely separate hardware
partition (e.g., utilizing Intel® Corporation’s Manageability
Engine (“ME”), Active Management Technologies
(“AMT”), Platform Resource Layer (“PRL”) and/or other
comparable or similar technologies) and/or a virtualized
partition (e.g., a virtual machine in Intel® Corporation’s
Virtualization Technology (“VT”) scheme). It will be appar-
ent to those of ordinary skill in the art that a virtualized host
may also be used to implement ME, AMT and PRL tech-
nologies (as described in further detail below with reference
to FIG. 7.)

FIG. 1 is a block diagram of a system configured to enable
modular boot firmware updates in accordance with one
embodiment of the invention. Platform 100, which corre-
sponds to a host computer system, includes a processor 110
connected to a chipset 120 via a desktop management
interface (DMI) 111. Processor 110 provides processing
power to platform 100 and may be a single-core or multi-
core processor, and more than one processor may be

10

15

20

25

30

35

40

45

50

55

60

65

4

included in platform 100. Processor 110 may be connected
to other components of platform 100 via one or more system
buses, communication pathways or mediums (not shown).

Chipset 120 includes a manageability engine (ME) 130,
which may be implemented as an embedded microprocessor
that operates independently of host processor 110, to man-
age the configuration and operation of platform 100. In one
embodiment, processor 110 operates under the direction of
a host operating system (not shown), whereas manageability
engine (ME) 130 provides a secure and isolated environment
that cannot be accessed by the host operating system. In one
embodiment, manageability engine (ME) 130 authenticates
users, controls access to peripheral devices, manages
encryption keys for protection of data stored on storage
devices of platform 100, and provides an interface to enter-
prise services 170 via network controller 160. Using enter-
prise services 170, manageability engine (ME) 130 main-
tains consistency with enterprise-wide policies for
configuration and management of platforms such as plat-
form 100, including providing a service for boot firmware
modular updates in accordance with one embodiment of the
invention. A boot firmware modular update manager may be
implemented as firmware executed by manageability engine
(ME 130).

Communication between ME 130 and enterprise services
170 occurs via out-of-band communication channel 171. In
one embodiment, out-of-band communication channel 171
is a secure communication channel between the manage-
ability engine (ME) 130 on the host system and enterprise
services 170 that manages the host system. The encryption/
decryption keys to enable secure communication between
platform 100 and enterprise services 170 may be stored in
the flash memory 190 of FIG. 1 during manufacture of
chipset 120 and manageability engine (ME) 130.

In the embodiment shown in FIG. 1, manageability engine
(ME) 130 is coupled to a microcontroller 140 via a Man-
ageability Engine Controller Interface (MECI) 131. In one
embodiment, microcontroller 140 is a general-purpose con-
troller that performs storage command decoding and other
accelerated operations. In the embodiment shown, manage-
ability engine (ME) 130 controls the behavior of microcon-
troller 140, which in turn controls the behavior of storage
controller 150. Microcontroller 140 includes drivers for
storage controller 150 as well as the logic related to any disk
encryption functionality. Storage controller 150 is the con-
troller for storage devices such as storage device 152 and
enables microcontroller 140 and ME 130 to access data
stored on storage device 152.

Platform 100 further includes memory devices such as
dynamic random access memory (DRAM) 112, static ran-
dom access memory (SRAM) 122 within chipset 120, and
flash memory 190, as well as storage device 152 accessible
via storage controller 150. These memory devices may
include random access memory (RAM) and read-only
memory (ROM). For purposes of this disclosure, the term
“ROM” may be used in general to refer to non-volatile
memory devices such as erasable programmable ROM
(EPROM), electrically erasable programmable ROM (EE-
PROM), flash ROM, flash memory, etc. Storage device 152
may include mass storage devices such as integrated drive
electronics (IDE) hard drives, and/or other devices or media,
such as floppy disks, optical storage, tapes, flash memory,
memory sticks, digital video disks, biological storage, etc.

Flash memory 190 is accessible by chipset 120 via flash
interface 191. Data stored on storage device 152 and/or in
memory devices DRAM 112, SRAM 122, and flash memory
190 may be encrypted.

US 9,483,246 B2

5

Flash memory 190 contains firmware used to initialize
platform 100. This initialization firmware includes Basic
Input/Output System (BIOS) firmware 192 to identify and
initialize system component hardware (such as the video
display card and hard disk) and some other hardware devices
including manageability engine (ME) 130. BIOS firmware
192 prepares system component hardware of platform 100 to
operate in a known low capability state, so other software
programs stored on various media, including an operating
system, can be loaded, executed, and given control of
platform 100. BIOS firmware 192 includes BIOS/ME com-
munication module 193, which enables the initial configu-
ration of manageability engine (ME) 130 during the boot
process. In one embodiment, manageability engine (ME)
130 registers with BIOS/ME communication module 193 to
receive a notification just before an operating system is
loaded for platform 100. This notification enables manage-
ability engine (ME) 130 to perform certain instructions in
preparation for the operating system being loaded.

Flash memory 190 also includes network controller firm-
ware 195 to configure network controller 160, and chipset
firmware 196 to configure chipset 120. Flash memory 190
also contains a data region 198. In one embodiment, data
region 198 is encrypted and may only be read by manage-
ability engine (ME) 130. Information used by ME 130 to
provide BIOS/boot firmware modular update management
services may be stored in data region 198 of flash memory
190 or on storage device 152.

Traditionally, all firmware used to initialize a platform,
start BIOS, and prepare the system for loading an operating
system has been provided as a monolithic image that is
loaded into non-volatile storage such as flash memory 190.
For example, flash memory 190 would be prepared by the
manufacturer to include a monolithic image of BIOS firm-
ware 192 in its entirety. If an update to one code module only
of BIOS firmware 192 was needed to correct a problem with
boot firmware, the entire monolithic image of BIOS firm-
ware 192 would need to be downloaded to flash memory
190.

Processor 110 may also be communicatively coupled to
additional components, such as video controllers, small
computer system interface (SCSI) controllers, network con-
trollers, universal serial bus (USB) controllers, input devices
such as a keyboard and mouse, etc. Platform 100 may also
include one or more bridges or hubs, such as a memory
controller hub, an input/output (I/O) controller hub, a PCI
root bridge, etc., for communicatively coupling various
system components. As used herein, the term “bus” may be
used to refer to shared communication pathways, as well as
point-to-point pathways.

Some components, such as network controller 160 for
example, may be implemented as adapter cards with inter-
faces (e.g., a PCI connector) for communicating with a bus.
In one embodiment, one or more devices may be imple-
mented as embedded controllers, using components such as
programmable or non-programmable logic devices or
arrays, application-specific integrated circuits (ASICs),
embedded computers, smart cards, and the like.

As used herein, the terms “processing system” and “data
processing system” are intended to broadly encompass a
single machine, or a system of communicatively coupled
machines or devices operating together. Example processing
systems include, without limitation, distributed computing
systems, supercomputers, high-performance computing sys-
tems, computing clusters, mainframe computers, mini-com-
puters, client-server systems, personal computers, worksta-
tions, servers, portable computers, laptop computers, tablets,

10

15

20

25

30

35

40

45

50

55

60

65

6

telephones, personal digital assistants (PDAs), handheld
devices, entertainment devices such as audio and/or video
devices, and other devices for processing or transmitting
information.

Platform 100 may be controlled, at least in part, by input
from conventional input devices, such as keyboards, mice,
etc., and/or by commands received from another machine,
biometric feedback, or other input sources or signals. Plat-
form 100 may utilize one or more connections to one or
more remote data processing systems (not shown), such as
through a network interface controller (NIC) 160, a modem,
or other communication ports or couplings.

Platform 100 may be interconnected to other processing
systems (not shown) by way of a physical and/or logical
network, such as a local area network (LAN), a wide area
network (WAN), an intranet, the Internet, etc. Communica-
tions involving a network may utilize various wired and/or
wireless short range or long range carriers and protocols,
including radio frequency (RF), satellite, microwave, Insti-
tute of Electrical and Electronics Engineers (IEEE) 802.11,
Bluetooth, optical, infrared, cable, laser, etc.

FIG. 2 shows further details of manageability engine
(ME) 130 and enterprise services 170 of FIG. 1 in enabling
automated modular boot firmware updates in accordance
with one embodiment of the invention. ME 130 includes
logic for performing automated boot firmware modular
updates on platform 100 and communicates with boot firm-
ware modular update service 270 of enterprise services 170
via out-of-band communication channel 171.

Within chipset 120, manageability engine 130 is shown
after chipset firmware 196 of FIG. 1 has been loaded.
Manageability engine 130 includes ME kernel 210, which
provides basic operational capabilities to manageability
engine 130, and ME common services 220, which provides
basic services such as network communication, security,
cryptographic, and timer services. Manageability engine 130
also includes out-of-band (OOB) communication module
230. OOB communication module 230 facilitates commu-
nication between components of platform 100 with corre-
sponding components of enterprise services 170 via network
controller 160. Manageability engine 230 also includes boot
firmware modular update manager 240, which manages the
boot firmware modular update process and is described in
further detail below.

Manageability engine (ME) 130 also includes manage-
ment module 250, security module 255, and theft detection
module 260. These modules are used in conjunction with
enterprise services 170 to maintain consistency with enter-
prise-wide policies for configuration and management of
platforms such as platform 100. OOB server communication
module 230 facilitates communication between manage-
ment module 250, security module 255, and theft detection
module 260 with corresponding components (not shown) of
enterprise services 170 via network controller 160.

boot firmware modular update manager 240 operates in
conjunction with boot firmware modular update service 270
to enable automated modular boot firmware updates in
accordance with one embodiment of the invention. OOB
communication module 230 facilitates communication
between modular boot firmware update manager 240 with
boot firmware modular update service 270 via network
controller 160. In one embodiment, out-of-band communi-
cation channel 171 is used to transfer updated boot firmware
code modules to platform 100. In the embodiment shown,
enterprise services 170 has an enterprise data repository 172
to store information such as versions of boot firmware code
modules installed on the host system, encryption keys, and

US 9,483,246 B2

7

other data used by boot firmware modular update service
270. The operation of boot firmware modular update man-
ager 240 and boot firmware modular update service 270 is
described in further detail with reference to FIG. 3.

FIG. 3 is a flow diagram showing interaction between a
boot firmware modular update manager and an enterprise
boot firmware modular update service to perform an auto-
mated modular boot firmware update in accordance with one
embodiment of the invention.

Enterprise services 170 of FIGS. 1 and 2 operate to
maintain consistency with enterprise-wide policies for con-
figuration and management of platforms such as platform
100. During communication between enterprise services 170
and platform 100 via OOB communication channel 171,
boot firmware modular update manager 240 and boot firm-
ware modular update service 270 may communicate regard-
ing the boot firmware code modules on platform 100.

In action 3.1, boot firmware modular update manager 240
checks with boot firmware modular update service 270 for
boot firmware updates. In action 3.2, if a boot firmware code
module that pertains to platform 100 has been updated, boot
firmware modular update service 270 sends a boot firmware
update request along with an updated code module/driver to
boot firmware modular update manager 240. While FIG. 3
shows communication beginning with boot firmware modu-
lar update manager 240, it is within the scope of the
invention that communication between boot firmware
modular update manager 240 and boot firmware modular
update service 270 may be initiated on the server side by
boot firmware modular update service 270.

In action 3.3, boot firmware modular update manager 240
checks the integrity of the updated code module/driver,
including verifying that the update request is authentic and
confirming the identity of the sender as boot firmware
modular update service 270. In one embodiment, boot
firmware modular update manager 240 verifies the integrity
of the boot firmware update by calculating a signature from
the updated code module/driver content and comparing the
calculated signature to a signature provided by boot firm-
ware modular update service 270 in an integrity-protected
(encrypted) manifest that accompanies the updated module/
driver. This comparison of a signature based upon the code
module/driver content confirms that the updated module/
driver has not been subject to tampering during transmission
from boot firmware modular update service 270. The
updated code module/driver is further protected by encryp-
tion, and boot firmware modular update manager 240
obtains decryption keys in order to decrypt the updated code
module/driver. In one embodiment, the encryption/decryp-
tion keys are stored in the data region 198 of flash memory
190 of FIG. 1 during manufacture of chipset 120 and
manageability engine (ME) 130 and are retrieved from flash
memory 190 by boot firmware modular update manager
240.

If the integrity of the updated code module/driver was
confirmed in action 3.3, boot firmware modular update
manager 240 updates a firmware volume with the updated
code module/driver in action 3.4. In one embodiment,
updated code modules/drivers are placed into a separate
dedicated partition of the firmware volume to facilitate the
modular update, whereas the monolithic image of the origi-
nal boot firmware code modules resides in a different
partition of the firmware volume. boot firmware modular
update manager 240 manages the partitioning of the firm-
ware volume and only boot firmware modular update man-
ager 240 has write access to the modular update partition of
the firmware volume. The modular update partition of the

10

15

20

25

30

35

40

45

50

55

60

65

8

firmware volume also stores an identifier for the updated
code module/driver that enables the updated code module/
driver to be used in place of the original code module/driver.

In action 3.5, boot firmware modular update manager 240
notifies boot firmware modular update service 270 of the
status of the boot firmware update request. Once the updated
code module/driver has been loaded into the modular update
partition of the firmware volume, it will automatically be
loaded when the system is booted. In action 3.6, boot
firmware modular update manager 240 may request a reboot
of the system to activate the updated code module/driver. A
system boot sequence is described in further detail below
with reference to FIG. 4. During the system boot sequence
performed as a result of action 3.6, a boot firmware modular
update dispatcher is invoked to ensure that the updated code
module/driver replaces the original code module/driver. The
actions performed by the boot firmware modular update
dispatcher during the boot sequence are described further
below with reference to FIGS. 5 and 6.

During the boot sequence, boot firmware modular update
manager 240 may obtain information that can be commu-
nicated in messages to boot firmware modular update ser-
vice 270, as shown in action 3.7. For example, a driver
dispatcher (as described below with reference to FIGS. 4 and
6) may notify boot firmware modular update manager 240
when processing of the updated code module/driver begins.
In action 3.8, after the various boot firmware code modules
have been loaded into memory, BIOS 310 attempts to boot
with the updated code module/driver. If BIOS 310 fails to
boot, then another attempt to reboot BIOS 310 can be made
with the original version of the code module/driver from the
original boot firmware code module image stored in the
partition of the firmware volume in which the original
monolithic image resides.

In action 3.9, boot firmware update manager 240 receives
information from the driver dispatcher regarding the status
of'the code module/driver update. For example, even though
the updated boot firmware code module may have been
loaded into memory, it may fail to execute properly. In
action 3.10, boot firmware update manager 240 sends an
acknowledgement message to boot firmware modular
update service 270 with the status of the boot firmware
update requested by boot firmware modular update service
270 in action 3.2.

During a system boot sequence, a series of hardware
initialization phases occur beginning with power on until an
operating system is loaded and assumes control of the
system. The boot sequence is described herein in accordance
with the Intel® Platform Innovation Framework for EFI
(Extensible Firmware Interface) Architecture Specification
(version 0.9, Sep. 16, 2003), available at the URL www-
intel-com/technology/framework. The framework boot
sequence will be described generally with reference to FIG.
4 to provide a context for the subsequent discussion of the
invention. The invention is not limited to operating within
the specific framework described.

Referring to FIG. 4, phases of a boot sequence during
which components of one embodiment of the invention
operates are shown. The framework boot sequence begins
with a security phase 410 that executes when the system is
powered on. A pre-verifier 411 executes during security
phase 410 to authenticate the BIOS. In existing systems,
pre-verifier 411 and the SEC phase 410 provide a Core Root
of Trust for Measurement (CRTM), namely enough code to
authenticate BIOS code and, if supported on the platform,

US 9,483,246 B2

9

start a Trusted Platform Module (TPM). More information
about TPMs can be found at URL www-trustedcomputing-
group-org.

Upon completion of security phase 410, a pre-EFI initial-
ization (PEI) phase 420 initializes the processor 421, chipset
423, and motherboard 425. PEI phase 420 initializes and
describes a minimum amount of system RAM and firmware
volume(s) that contain code for subsequent phases. During
PEI phase 420, preparations are made to launch an EFI
driver dispatcher 432 and intrinsic services 434 securely in
the driver eXecution environment (DXE) phase 430. In
DXE phase 430, EFI driver dispatcher 432 acts to load
device, bus, and service drivers 436 in order to construct an
environment that can support a boot manager to boot the
operating system. With reference to the present invention, a
modified version of the EFI driver dispatcher, referred to
herein as a boot firmware modular update dispatcher, is used
in DXE phase 430. Following DXE phase 430, a boot device
selection (BDS) phase 440 loads a boot manager 442.
Following BDS phase 440, a transient system load (TSL)
phase 450 occurs during which the operating system is
booted. Boot manager 442 launches a transient OS boot
loader 456, which creates a transient OS environment 454 in
which OS-absent applications 452 can run. Boot manager
442 also launches a final OS boot manager 458 which boots
the operating system. During runtime phase 460, the system
creates a final OS environment 464 in which OS-present
applications 462 can run. During runtime phase 460, the
system operates under control of the operating system. Upon
a system failure during OS runtime (RT phase 460), the
firmware PEI phase 420 and DXE phase 430 flows may be
reconstituted in an after life phase 470 to allow OS-absent
recovery activities.

Loading of updated boot firmware code modules/drivers
in accordance with the present invention occurs during the
driver eXecution environment (DXE) phase 430 under con-
trol of a boot firmware modular update dispatcher, which is
a modified version of the EFI driver dispatcher 432 of FIG.
4 to facilitate modular boot firmware updates in accordance
with embodiments of the present invention. The operation of
a boot firmware modular update dispatcher is described in
further detail with reference to FIGS. 5 and 6.

FIG. 5 is a flowchart of a method to perform a modular
boot firmware update when booting a system in accordance
with one embodiment of the invention. In “During Boot,
BIOS Modular Update Dispatcher Examines Modular BIOS
Update Firmware Volume Partition for Updated Drivers”
step 510, a boot firmware modular update dispatcher exam-
ines the modular update partition of the firmware volume for
updated code modules/drivers. Control then proceeds to
“Boot Firmware Modular Update Dispatcher Loads Updated
Drivers from BIOS Modular Update Firmware Volume
Partition” step 520, where the boot firmware modular update
dispatcher loads the updated code modules/drivers into
memory instead of the original code modules/drivers from
the monolithic BIOS image stored in a different partition of
the firmware volume. Control then proceeds to “Boot BIOS”
step 530, where BIOS is booted at the end of the DXE phase
430 of FIG. 4. Control then proceeds to “Updated Driver
Fails?” decision point 430, where a determination is made
whether the updated driver failed during the BIOS boot. If
the updated driver failed, control proceeds to “Load Original
Driver from Original Firmware Volume Partition” step 540,
where the original code module/driver is loaded from the
monolithic BIOS image stored in the original partition of the
firmware volume. Control then proceeds to “Continue Boot
with OS” step 550, where the boot sequence continues with

20

30

40

45

10

booting the operating system. While the boot sequence
continues, control proceeds to “Provide Status of Boot
Firmware Modular Update to Server” step 560, where, as
described with reference to FIG. 3, BIOS modular update
manager 240 provides status updates to boot firmware
modular update service 270. Control then proceeds to
“Server Responds to Status of Boot Firmware Modular
Update” step 570, where boot firmware modular update
service 270 may respond to the status messages received
regarding the modular boot firmware update. For example,
if the modular boot firmware update failed, boot firmware
modular update service 270 may provide another version of
the updated code module/driver in a subsequent update
request.

FIG. 6 is a flow diagram for booting a system after an
automated modular boot firmware update has been per-
formed in accordance with one embodiment of the inven-
tion. The flow diagram of FIG. 6 shows activities occurring
during DXE phase 630 and BDS phase 640, which corre-
spond to DXE phase 430 and BDS phase 440 of FIG. 4. Prior
to the execution of DXE phase 630, a security phase similar
to SEC phase 410 and a PEI phase similar to PEI phase 420
of FIG. 4 have been performed. The previous PEI phase will
have initialized a hand-off block list 604, which is a data
structure containing information being passed from the
previous phase in the boot sequence during which initial-
ization of the processor, chipset, and main memory
occurred. Hand-off block list 604 will contain information
about firmware volume(s) discovered during initialization of
the system, including the firmware volumes found in firm-
ware volume hardware 620. For example, during the PEI
phase while booting the system shown in FIG. 1, a firmware
volume would be discovered containing partitions for BIOS
firmware 192 and chipset firmware 196. Each separate
firmware volume discovered may have its own respective
hand-off block provided by the PEI phase. Hand-off block
list 604 details the location of firmware volumes that contain
firmware files and includes a base address and length for
each firmware volume. A DXE Initial Program Load (IPL)
initialization module may use hand-off block list 604 to
discover the location of the DXE Foundation firmware file.

The previous PEI phase will also discover and launch
DXE foundation code 606. DXE foundation code 606 pro-
duces a set of boot services, runtime services, and DXE
services. DXE foundation code 606 uses hand-off block list
604 to discover drivers to execute. DXE foundation code
606 is designed to be completely portable with no processor,
chipset or platform dependencies. DXE foundation code 606
depends only upon hand-off block list 604 for its initial state.
This single dependency means that DXE foundation code
606 does not depend on any services from a previous phase,
so all the prior phases can be unloaded once hand-off block
list 604 is passed to DXE foundation code 606. DXE
foundation code 606 contains no hard coded addresses. As
a result, DXE foundation code 606 can be loaded anywhere
in physical memory and can function correctly no matter
where physical memory or where firmware volumes are
located in the processor’s physical address space. DXE
foundation code 606 does not contain any processor-spe-
cific, chipset-specific, or platform-specific information.
Instead, DXE foundation code 606 is abstracted from the
system hardware through a set of architectural protocol
interfaces. These architectural protocol interfaces are pro-
duced by a set of DXE drivers that are invoked by the DXE
Dispatcher, here represented as boot firmware modular
update dispatcher 610.

US 9,483,246 B2

11

DXE foundation code 606 produces the EFI System Table
and its associated set of EFI Boot Services and EFI Runtime
Services. DXE foundation code 606 also contains boot
firmware modular update dispatcher 610. After DXE foun-
dation code 606 is launched, control is passed to a DXE
dispatcher, which in this case is boot firmware modular
update dispatcher 610, which is responsible for loading and
invoking DXE drivers found in the firmware volumes
described in the hand-off blocks such as hand-off block list
604.

Firmware volume hardware 620 is a persistent physical
repository that contains firmware code and/or data. Firm-
ware volume hardware is typically a flash component such
as flash memory 190 of FIG. 1 but may be some other type
of persistent storage. A single physical firmware device may
be divided into smaller pieces to form multiple logical
firmware devices. Similarly, multiple physical firmware
devices may be aggregated into one larger logical firmware
device. A logical firmware device is called a firmware
volume. In the EFI framework, the basic storage repository
for data and/or code is the firmware volume. Each firmware
volume is organized into a file system. As such, the file is the
base unit of storage for EFI framework firmware.

If the files contained in a firmware volume are accessed
from either the Security (SEC) or Pre-EFI Initialization
(PEI) phases or early in the Driver Execution Environment
(DXE) phase, the firmware volume may be memory mapped
and follow the Framework Firmware File System (FFS)
format, which is defined in the Intel® Platform Innovation
Framework for EFI Firmware File System Specification,
available at the URL www-intel-com/technology/frame-
work. The SEC, PEI, and DXE phases can then parse the
FFS and Framework firmware image format as necessary.

Boot firmware modular update dispatcher 610 searches
for drivers in the firmware volumes described in hand-off
block list 604. A firmware volume may have an associated
file, referred to as an a priori file, which contains the list of
DXE drivers that should be loaded and executed first. Once
the DXE drivers from the a priori file have been loaded and
executed, dependency expressions in the remaining DXE
drivers in the firmware volumes may be evaluated to deter-
mine the order in which they will be loaded and executed.

In one embodiment, control is transferred from boot
firmware modular update dispatcher 610 to BDS 642 after
the DXE drivers in the a priori file and all the DXE drivers
whose dependency expressions evaluate to TRUE have been
loaded and executed. BDS 642 is responsible for establish-
ing the console devices and attempting the boot of operating
systems in BDS phase 640. As the console devices are
established and access to boot devices is established, addi-
tional firmware volumes may be discovered. If BDS 642 is
unable to start a console device or gain access to a boot
device, it reinvokes boot firmware modular update dis-
patcher 610. This invocation allows boot firmware modular
update dispatcher 610 to load and execute DXE drivers 632
from firmware volumes that have been discovered since the
last time the boot firmware modular update dispatcher 610
was invoked. Once the boot firmware modular update dis-
patcher has loaded and executed all the DXE drivers 632 it
can, control is once again returned to BDS 642 to continue
the OS boot process.

The EFI Firmware Volume Protocol allows programs
running during the DXE phase to access firmware volumes,
including firmware volumes that are not memory mapped
and firmware volumes that do not implement the FFS. In the
embodiment shown, BIOS/modular update dispatcher 610
accesses firmware volumes using the file abstraction con-

10

20

25

35

40

45

12

tained in the EFI Firmware Volume Protocol using a firm-
ware volume protocol driver 626.

In the embodiment shown, the Firmware Volume Protocol
is produced by firmware volume protocol driver 626, which
serves as a file system driver, and uses the EFI Firmware
Volume Block Protocol as implemented by firmware volume
block protocol driver 624 to access the firmware volume
hardware 620. Firmware volume block protocol driver 624
provides block-level access to firmware volume hardware
620. Although the drivers 624 and 626 shown as implement-
ing the EFI Firmware Volume Block Protocol provide an
abstraction of firmware volume hardware 620, an arbitrary
number of abstractions beneath the Firmware Volume Block
driver may be used to satisfy platform requirements. The
EFI Firmware Volume Block Protocol provides byte-level
read/write functionality and block-level erase functionality.
The EFI Firmware Volume Block Protocol further exposes
device-hardening features, such as may be required to pro-
tect the firmware from unwanted overwriting and/or erasure.
A file system driver such as firmware volume protocol driver
626 may be layered on top of the firmware volume block
protocol driver to enable file-level access to a firmware
volume. The Firmware Volume Protocol abstracts the file
system that is used to format the firmware volume and the
hardware device-hardening features that may be present. For
more information, including information on the Firmware
Volume Protocol, see the Intel® Platform Innovation Frame-
work for EFI Firmware Volume Specification available at
the URL www-intel-com/technology/framework.

Boot firmware modular update dispatcher 610 operates
during pre-boot to schedule drivers for execution. In one
embodiment, boot firmware modular update dispatcher 610
provides dispatch services to load and execute DXE drivers
from the firmware volume; scheduling services to clear the
schedule on require (SOR) flag for a component that is
stored in a firmware volume; trust services to change the
state of a file stored in a firmware volume from an untrusted
state to a trusted state; and ProcessFirmwareVolume services
to create a firmware volume handle for a firmware volume
that is presented in system memory. In one embodiment,
boot firmware modular update dispatcher looks into all
firmware volumes available and creates a list of drivers/code
modules that will be loaded based on the version informa-
tion. As described above, boot firmware modular update
dispatcher 610 first looks into FV partition for updated
drivers 622 for updated drivers and then into a separate
partition of the firmware volume for the original drivers.
Boot firmware code modules to be updated will have a
version string that defines the latest EFI driver/module
which needs to load during pre-boot.

The boot firmware modular update mechanism described
herein enables individual boot firmware code modules to be
updated rather than requiring download and update of an
entire boot firmware monolithic image. The techniques
described herein provide security with an integrity check of
updated modules/drivers, and provide a more user-friendly
update process since the user is not required to reboot his or
her system to receive a modular boot firmware update.

The techniques described herein are also fault-tolerant so
that if the new updated code module/driver fails, then the
original code driver/module will be used to boot the system,
which will continue to function as it did prior to the
attempted update. Feedback can be provided to the server
about the failed module so that a corrected code module/
driver can be provided in a subsequent update request.

FIG. 7 shows a virtual machine environment for imple-
menting a boot firmware modular update manager in accor-

US 9,483,246 B2

13

dance with one embodiment of the invention. If platform
700 is virtualized, it may include only a single processor but
a virtual machine monitor (“VMM 730”) on the host may
present multiple abstractions and/or views of the host, such
that the underlying hardware of the host appears as one or
more independently operating virtual machines (“VMs”).
VMM 730 may be implemented in software (e.g., as a
standalone program and/or a component of a host operating
system), hardware, firmware and/or any combination
thereof. VMM 730 manages allocation of resources on the
host and performs context switching as necessary to cycle
between various VMs according to a round-robin or other
predetermined scheme. It will be readily apparent to those of
ordinary skill in the art that although only one processor is
illustrated (“Processor 705”), embodiments of the present
invention are not so limited and multiple processors may
also be utilized within a virtualized environment.

Although only two VM partitions are illustrated (“VM
7107 and “VM 7207, hereafter referred to collectively as
“VMs”), these VMs are merely illustrative and additional
virtual machines may be added to the host. VM 710 and VM
720 may function as self-contained platforms respectively,
running their own “guest operating systems” (i.e., operating
systems hosted by VMM 730, illustrated as “Guest OS 711~
and “Guest OS 721" and hereafter referred to collectively as
“Guest OS”) and other software (illustrated as “Guest Soft-
ware 712” and “Guest Software 722" and hereafter referred
to collectively as “Guest Software”).

Each Guest OS and/or Guest Software operates as if it
were running on a dedicated computer rather than a virtual
machine. That is, each Guest OS and/or Guest Software may
expect to control various events and have access to hardware
resources on platform 700. Within each VM, the Guest OS
and/or Guest Software may behave as if they were, in effect,
running on platform 700’s physical hardware (“Host Hard-
ware 7407, which may include a network controller 760).

It will be readily apparent to those of ordinary skill in the
art that a physical hardware partition with a dedicated
processor such as manageability engine (ME) 130 of FIG. 1
may provide a higher level of security than a virtualized
partition (as illustrated in FIG. 7), but embodiments of the
invention may be practiced in either environment and/or a
combination of these environments to provide varying levels
of security. It will also be readily apparent to those of
ordinary skill in the art that an ME, AMT or PRL platform
may be implemented within a virtualized environment. For
example, VM 720 may be dedicated as an ME partition on
a host while VM 710 runs typical applications on the host.
In this scenario, the host may or may not include multiple
processors. If the host does include two processors, for
example, VM 720 may be assigned the other processor while
VM 710 (and other VMs on the host) may share the
resources of processor 705. On the other hand, if the host
includes only a single processor, the processor may serve
both the VMs, but VM 720 may still be isolated from the
other VMs on the host with the cooperation of VMM 730.
For the purposes of simplicity, embodiments of the invention
are described in a manageability engine (ME) environment,
but embodiments of the invention are not so limited. Instead,
any reference to manageability engine, ME, a “partition”, “a
secure partition”, a “security partition” and/or a “manage-
ment partition” shall include any physical and/or virtual
partition (as described above).

Embodiments of the mechanisms disclosed herein may be
implemented in hardware, software, firmware, or a combi-
nation of such implementation approaches. Embodiments of
the invention may be implemented as computer programs

20

25

35

40

45

50

55

60

65

14

executing on programmable systems comprising at least one
processor, a data storage system (including volatile and
non-volatile memory and/or storage elements), at least one
input device, and at least one output device.

Program code may be applied to input data to perform the
functions described herein and generate output information.
Embodiments of the invention also include machine-acces-
sible media containing instructions for performing the
operations of the invention or containing design data, such
as HDL, which defines structures, circuits, apparatuses,
processors and/or system features described herein. Such
embodiments may also be referred to as program products.

Such machine-accessible storage media may include,
without limitation, tangible arrangements of particles manu-
factured or formed by a machine or device, including storage
media such as hard disks, any other type of disk including
floppy disks, optical disks, compact disk read-only memo-
ries (CD-ROMs), compact disk rewritable’s (CD-RWs), and
magneto-optical disks, semiconductor devices such as read-
only memories (ROMs), random access memories (RAMs)
such as dynamic random access memories (DRAMs), static
random access memories (SRAMs), erasable programmable
read-only memories (EPROMs), flash programmable
memories (FLASH), electrically erasable programmable
read-only memories (EEPROMSs), magnetic or optical cards,
or any other type of media suitable for storing electronic
instructions.

The output information may be applied to one or more
output devices, in known fashion. For purposes of this
application, a processing system includes any system that
has a processor, such as, for example; a digital signal
processor (DSP), a microcontroller, an application specific
integrated circuit (ASIC), or a microprocessor.

The programs may be implemented in a high level pro-
cedural or object oriented programming language to com-
municate with a processing system. The programs may also
be implemented in assembly or machine language, if
desired. In fact, the mechanisms described herein are not
limited in scope to any particular programming language. In
any case, the language may be a compiled or interpreted
language.

Presented herein are embodiments of methods and sys-
tems for performing automated boot firmware modular
updates. While particular embodiments of the present inven-
tion have been shown and described, it will be obvious to
those skilled in the art that numerous changes, variations and
modifications can be made without departing from the scope
of the appended claims. Accordingly, one of skill in the art
will recognize that changes and modifications can be made
without departing from the present invention in its broader
aspects. The appended claims are to encompass within their
scope all such changes, variations, and modifications that
fall within the true scope and spirit of the present invention.

What is claimed is:

1. A computer-implemented method comprising:

sending an updated boot firmware code module to a
secure partition implemented in a microprocessor of a
system, the secure partition being isolated from a host
operating system of the system, the updated boot firm-
ware code module to automatically replace one original
boot firmware code module of a plurality of boot
firmware code modules stored in a different partition of
the system, wherein only the one original boot firm-
ware code module is replaced with the updated boot
firmware code module and wherein the updated boot

US 9,483,246 B2

15

firmware code module is executed with the plurality of
boot firmware code modules of the system when the
system is next booted;
receiving a status from the secure partition of the system,
the status indicating whether the system was success-
fully booted using the updated boot firmware code
module; and
sending another version of the updated boot firmware
code module to the secure partition of the system when
the status indicates that the system was not successfully
booted using the updated boot firmware code module.
2. The method of claim 1, wherein the sending the
updated boot firmware code module to the secure partition
comprises sending the updated boot firmware code module
in an encrypted signed manifest.
3. A computer program product comprising:
a non-transitory computer-readable storage medium; and
instructions in the computer-readable storage medium,
wherein the instructions, when executed in a processing
system, cause the processing system to perform opera-
tions comprising:
sending an updated boot firmware code module to a
secure partition of the system, the secure partition
being isolated from a host operating system of the
system, the updated boot firmware code module to
automatically replace one original boot firmware code
module of a plurality of boot firmware code modules
stored in a different partition of the system, wherein
only the one original boot firmware code module is
replaced with the updated boot firmware code module
and wherein the updated boot firmware code module is
executed with the plurality of boot firmware code
modules of the system when the system is next booted;
receiving a status from the secure partition of the system,
the status indicating whether the system was success-
fully booted using the updated boot firmware code
module; and

35

16

sending another version of the updated boot firmware
code module to the secure partition of the system when
the status indicates that the system was not successfully
booted using the updated boot firmware code module.

4. The computer program product of claim 3, wherein the
sending the updated boot firmware code module to the
secure partition comprises sending the updated boot firm-
ware code module in an encrypted signed manifest.

5. An enterprise service platform comprising:

at least one processor to execute an enterprise service; and

an update service partition coupled to the at least one

processor, the update service partition to send an
updated boot firmware code module to a secure parti-
tion of a system, the secure partition being isolated
from a host operating system of the system, the updated
boot firmware code module to automatically replace
one original boot firmware code module of a plurality
of boot firmware code modules stored in a different
partition of the system, wherein only the one original
boot firmware code module is to be replaced with the
updated boot firmware code module and wherein the
updated boot firmware code module is to be executed
with the plurality of boot firmware code modules of the
system when the system is next booted, the update
service partition to receive a status from the secure
partition of the system, the status indicating whether
the system was successfully booted using the updated
boot firmware code module, and

wherein the update service partition is to send another

version of the updated boot firmware code module to
the secure partition of the system when the status
indicates that the system was not successfully booted
using the updated boot firmware code module.

6. The platform of claim 5, wherein send the updated boot
firmware code module to the secure partition comprises
sending the updated boot firmware code module in an
encrypted signed manifest.

#* #* #* #* #*

